An eigenvalue inequality and spectrum localization for complex matrices
نویسندگان
چکیده
Using the notions of the numerical range, Schur complement and unitary equivalence, an eigenvalue inequality is obtained for a general complex matrix, giving rise to a region in the complex plane that contains its spectrum. This region is determined by a curve, generalizing and improving classical eigenvalue bounds obtained by the Hermitian and skew-Hermitian parts, as well as the numerical range of a matrix.
منابع مشابه
Ela an Eigenvalue Inequality and Spectrum Localization for Complex Matrices∗
Using the notions of the numerical range, Schur complement and unitary equivalence, an eigenvalue inequality is obtained for a general complex matrix, giving rise to a region in the complex plane that contains its spectrum. This region is determined by a curve, generalizing and improving classical eigenvalue bounds obtained by the Hermitian and skew-Hermitian parts, as well as the numerical ran...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملPartial Eigenvalue Assignment in Discrete-time Descriptor Systems via Derivative State Feedback
A method for solving the descriptor discrete-time linear system is focused. For easily, it is converted to a standard discrete-time linear system by the definition of a derivative state feedback. Then partial eigenvalue assignment is used for obtaining state feedback and solving the standard system. In partial eigenvalue assignment, just a part of the open loop spectrum of the standard linear s...
متن کاملInverse Young inequality in quaternion matrices
Inverse Young inequality asserts that if $nu >1$, then $|zw|ge nu|z|^{frac{1}{nu}}+(1-nu)|w|^{frac{1}{1-nu}}$, for all complex numbers $z$ and $w$, and equality holds if and only if $|z|^{frac{1}{nu}}=|w|^{frac{1}{1-nu}}$. In this paper the complex representation of quaternion matrices is applied to establish the inverse Young inequality for matrices of quaternions. Moreover, a necessary and ...
متن کاملEigenvalue Inequalities and Schubert Calculus
Using techniques from algebraic topology we derive linear inequalities which relate the spectrum of a set of Hermitian matrices A1, . . . , Ar ∈ Cn×n with the spectrum of the sum A1 + · · ·+Ar. These extend eigenvalue inequalities due to Freede-Thompson and Horn for sums of eigenvalues of two Hermitian matrices.
متن کامل